Question 1 [4%] Show that $\log(n!) = O(n \log n)$. You must provide a proper n_0 and c to justify your answer, Hint : $\log(a \cdot b) = \log a + \log b$.

Question 2 [4%] Is $2^{2n} = O(2^n)$? Explain your answer!

Question 3 [4%] Use the iterating method to determine an asymptotically tight upper (big O) bound on the recurrence $T(n) = T(n-2) + n + 5$.

Question 4 [4%] Give asymptotically tight upper bound (big O) for $T(n) = T(n^{1/2}) + 1$.

Question 1 [8 points]: Maximize Number of On-time Jobs

You are given a set of \(n \) jobs. Associated with each job \(i \) is a due date \(d_i \). In order to complete job \(i \), one has to process the job \(i \) on a machine for one unit of time. Only one machine is available for processing jobs. A job \(i \) is on-time if it is completed on or before its due-date \(d_i \).

Give a greedy algorithm (pseudo code is sufficient) that finds a schedule for these jobs, which maximize the number of on-time jobs. What is the running time of your algorithm? Explain your solution!

Question 2 [8 points]

We can recursively define the number of combinations of \(m \) things of \(n \), denoted \(\binom{n}{m} \), for \(n \geq 1 \) and \(0 \leq m \leq n \), by

\[
\binom{n}{m} = \begin{cases}
1 & \text{if } m = 0 \text{ or } m = n \\
\binom{n-1}{m} + \binom{n-1}{m-1} & \text{if } 0 < m < n.
\end{cases}
\]

(a) Give a dynamic programming algorithm to compute \(\binom{n}{m} \).

What is the running time of your algorithm?

(b) Using the algorithm in (a), construct the table for \(\binom{6}{4} \)
PARTITION problem: Given a set \(Z = \{ a_1, a_2, \ldots, a_n \} \) of \(n \) positive integers.

Question: Is there a subset \(Z' \subseteq Z \) such that \(\sum Z' = \sum (Z-Z') \).

The AIRLINE Problem: Given

- a starting city \(X \),
- a finite set of destination cities \(D = \{ d_1, d_2, \ldots, d_m \} \),
- a set of positive integers \(T = \{ t_1, t_2, \ldots, t_m \} \), where \(t_i \) is the round trip time between \(X \) and destination \(d_i \),
- a positive integer \(K \) which is the number of aircrafts, and
- a positive integer \(M \) that is the time each aircraft can fly continuously without maintenance.

Question: Can a fleet of \(K \) aircrafts starting at \(X \) service all destinations in \(D \) without maintenance?

Note:
- an aircraft must return to \(X \) before it goes to next destination
- all aircrafts start at \(X \) and must return to \(X \) at the end of services
- all destination cities must be serviced at least once
- if \(D' \subseteq D \) is a set of destinations assigned to aircraft \(i \) and \(T' \subseteq T \) is a set of corresponding round trip times for cities in \(D' \), then \(\sum T' \leq M \)

Use PARTITION Problem to show that the AIRLINE Problem is NP-Complete.
Total: 12 points (3 points per question)

Question 1: Use iteration method to find the asymptotic tight upper bound (big O) for

\[T(n) = T(n-a) + T(a) + O(n) \] where \(a \) is a small integer and \(a \geq 1 \).

Question 2: Show that for any real constants \(a \) and \(b \), where \(b > 0 \), \((n+a)^b = O(n^b) \).

Note: \(a \) may be a negative number.

Question 3: Given \(n \) integers in the range of 1 to \(k \). Describe an algorithm that

- pre-processes its input in \(O(n+k) \)
- then answers any query about how many of the \(n \) integers fall into a range \([u..v]\) in \(O(1) \) where \(v \geq u \).

Question 4: Suppose that you are given an \(O(n) \) algorithm, \(\text{split}(A,p,x,r) \) where \(A \) is an array of \(n \) elements, and \(p, x \) and \(r \) are integers such that \(p \leq x < r \).

\(\text{split}(A,p,x,r) \) splits elements of \(A[p..r] \) to two sublists, \(A[p..x] \) and \(A[x+1..r] \) such that each element in \(A[p..x] \) has value smaller than each element in \(A[x+1..r] \).

Use \(\text{split}(A,p,x,r) \) to modify the quicksort so that the worst case running time is \(O(n \log n) \).

Note: you just need to give the pseudo code
Question 1 [8%]

n jobs are available at the same time and to be scheduled for execution on one machine. Associate with each job J_i, is a processing time p_i and a weight w_i. The cost of processing J_i is $w_i \cdot c_i$ where c_i is the completion time of J_i. The total cost of processing all n jobs is $\Sigma (w_i \cdot c_i)$.

<table>
<thead>
<tr>
<th></th>
<th>c_1</th>
<th>c_2</th>
<th>...</th>
<th>c_{n-2}</th>
<th>c_{n-1}</th>
<th>c_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_1</td>
<td>J_2</td>
<td>...</td>
<td>J_{n-1}</td>
<td>J_n</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: $c_i = p_1 + p_2 + ... + p_i$

Consider the following greedy strategy: Process jobs according to nonincreasing of order of their ratios w_i / p_i will minimize the total cost.

Show that there is an optimal solution such that the job with largest ratio is scheduled first.

Question 2 [8%]

Consider an n by m array of positive integers $D[1..n, 1..m]$. Give a dynamic programming algorithm to find the least cost path to walk through array D.

Example: A sample 4 by 5 array D.

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>19</th>
<th>90</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>14</td>
<td>2</td>
<td>12</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>47</td>
<td>32</td>
<td>14</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

A path covers exactly m positions (i.e. one position per column) of array D. It may begin at any position in the 1st column and may end at any position in the last column. At any position $D[i,j]$, it is only possible to move to one of the three positions: $D[i-1,j+1]$, $D[i,j+1]$ or $D[i+1,j+1]$ (note: assume that $D[0,j]$ and $D[n+1,j]$ are ∞ for all j). The cost of a path is the sum of integers in the positions through which it passed.
PARTITION problem: Given a set $Z = \{a_1, a_2, \ldots, a_n\}$ of n positive integers.

Question: Is there a subset $Z' \subseteq Z$ such that $\sum Z' = \sum (Z-Z')$.

Scheduling Jobs with Late Penalty Problem:

Given:

- A set of m jobs, one machine and a positive integer T.
- Associated with each job i is a processing time $p(i)$, deadline $d(i)$ and late penalty $w(i)$.
- Assume all jobs are available at time 0 and to be scheduled on the machine.
- If job i is completed after its deadline $d(i)$, then it incurs a late penalty $w(i)$.

Question: Is there a schedule for m jobs such that the sum of the late penalties is not more than T? i.e. If L is a set of all late jobs in a schedule, then $\sum_{i \in L} w(i) \leq T$

Use PARTITION Problem to show that the Scheduling Jobs with Late Penalty Problem is NP-Complete.
PARTITION problem: Given a set $Z = \{a_1, a_2, \ldots, a_n\}$ of n positive integers.

Question: Is there a subset $Z' \subseteq Z$ such that $\sum Z' = \sum (Z-Z')$.

Scheduling Jobs with Late Penalty Problem on 3 Machines:

Given:

- A set of m jobs, **threemachines** and a positive integer T.
- Associated with each job i is a processing time $p(i)$, deadline $d(i)$ and late penalty $w(i)$.
- Assume all jobs are available at time 0 and to be scheduled on **3machines**.
- If job i is completed after its deadline $d(i)$, then it incurs a late penalty $w(i)$.

Question: Is there a **non-preemptive** schedule for m jobs such that the sum of the late penalties is not more than T? i.e. If L is a set of all late jobs in a schedule, then $\sum_{i \in L} w(i) \leq T$

Use **PARTITION Problem** to show that the Scheduling Jobs with Late Penalty on 3 Machines Problem is NP-hard.
Question 1 [25 points] PRAM Algorithm

Given an array A of n numbers and a number x. The goal is to compute number of elements in A that are greater than x. Give an O(log n) time n processor CREW PRAM algorithm for solving this problem.

Question 2 [25%] Dynamic Programming Algorithm

Let A={a_1, a_2, ..., a_n} be a finite set of distinct coin types (e.g. a_1= 50, a_2=25, a_3=10 etc). We assume that each a_i is an integer, a_1 > a_2 > ... > a_n > 0 and each type is available in unlimited quantity.

(a) Let a_n = 1. Give a dynamic programming algorithm that makes up an exact amount C using minimum number of coins. C is an integer > 0.

(b) Using algorithm in (a), construct a table for A={8, 4, 3, 1} and C = 14.

Question 3 [25%] Show that Scheduling jobs with release times and deadlines (SJRD) problem is NP-Complete. Hint : Use Partition Problem.

SJRD Problem: You are given a set of n jobs. Associate with each job i is a processing time p_i, a deadline d_i and a ready time r_i. A job is not available for processing until its ready time and must be completely processed by its deadline.

Question : Is it possible to construct a nonpreemptive schedule for the given n jobs on one machine without violating any ready time and any deadline?

Note : Assume information of all jobs are available at time = 0.

PARTITION problem : Given a set Z = {a_1, a_2, ..., a_n} of n positive integers.

Question : Is there a subset Z' \subseteq Z such that \(\sum Z' = \sum (Z-Z') \).
Question 4 [25%] Approximation Algorithm

0/1 Knapsack Optimization Problem: Given n objects and a knapsack.

Each object i has an integer weight w_i and an integer profit p_i.
The knapsack has a capacity M.
Assume $\sum w_i > M$ and each $w_i \leq M$.
If object i is placed in the knapsack then $x_i = 1$, otherwise $x_i = 0$.

Objective: To obtain a filling of the knapsack that maximize the total profit earned, i.e. maximize $\sum p_i x_i$ such that $\sum w_i x_i \leq M$, where $x_i \in \{0, 1\}$ for $1 \leq i \leq n$.

From CSC810, Mr. NotVerySmart knows that 0/1 Knapsack decision problem is NP-Complete. He proposes a fast approximation algorithm for 0/1 Knapsack optimization problem. The algorithm is as follows:

Step 1. Sort objects in nonincreasing order of their weights.
Assume the final ordering is $w_1 \geq w_2 \geq \ldots \geq w_n$

Step 1. total_profit = 0; total_weight = 0; $i = 1$;

Step 2. while ((total_weight + w_i) \leq M) {
 total_weight = total_weight + w_i // put the object into knapsack
 total_profit = total_profit + p_i // update the total profit
 $i = i + 1$;
 }

Step 3. return total_profit;

(a) [10%] Provide an example to show that the approximation bound of Mr. NotVerySmart’s algorithm is greater than C, where C is a positive constant, i.e. you need to show an example such that $\text{optimal_profit} / \text{approximated_profit} > C$.

(b) [15%] Mr. NotVerySmart realizes that the above algorithm has poor performance. He proposes to modify Step 1 as follow:

Step 1: Sort objects in nonincreasing order of their profits.
Assume the final ordering is $p_1 \geq p_2 \geq \ldots \geq p_n$

Show that the approximation bound of Mr. NotVerySmart’s modified algorithm is less than or equal to M, where M is the capacity of the knapsack, i.e. you need to prove that $\text{optimal_profit} / \text{approximated_profit} \leq M$.